The substance fluoresces bright blue under ultraviolet light.

Anal. Calcd. for C23H14: C, 95.14; H, 4.86. Found: C, 95.11; H, 4.86.

The *di-picrate* forms fine, orange needles from benzene, m. p. 201-201.5° corr.

Anal. Calcd. for $C_{35}H_{29}O_{14}N_6$: C, 56.13; H, 2.69. Found: C, 56.55; H, 2.71.

 $3-[\alpha-Naphthoyl]$ -acenaphthene.—The condensation of α -naphthoyl chloride (33.4 g.) with acenaphthene (30 g.) was carried out in 250 cc. of tetrachloroethane at 20-25°, using 26 g. of aluminum chloride. After working up the product in the usual way and distilling the neutral fraction in vacuum, 48 g. (89%) of a light yellow solid was obtained, b. p. 299-302° (7.5 mm.). Recrystallization from

benzene-ether gave 41 g. (76%) of the pure 3-isomer as yellow prisms, m. p. 159-160° corr.

Anal. Calcd. for C22H16O: C, 89.75; H, 5.10. Found: C, 89.49; H, 5.37.

The oily residue was collected from the mother liquors and subjected to pyrolysis. This afforded 0.2 g. of purified hydrocarbon identical with the material (II) prepared by the other method.

Summary

A hydrocarbon having the cholanthrene ring system and one additional benzene ring has been synthesized.

CONVERSE MEMORIAL LABORATORY CAMBRIDGE, MASS. RECEIVED JULY 12, 1935

[CONTRIBUTION FROM THE LABORATORIES OF THE ROCKEFELLER INSTITUTE FOR MEDICAL RESEARCH]

The Thermodynamic Ionization Constants of Carbonic Acid at 38° from Electromotive Force Measurements

By D. A. MACINNES AND DONALD BELCHER

In a recent paper from this Laboratory¹ the authors described measurements, at 25°, on concentration cells without liquid junctions, leading to the determination of the two ionization constants of carbonic acid. The measurements have been repeated at body temperature, 38°, with the results and conclusions to be outlined in this paper.

(**a**) The First Ionization Constant.-As in our previous work, the potentials, $E'_{\rm A}$, were obtained of cells of the type

in which the concentrations of potassium chloride and potassium bicarbonate were kept equal. The results were interpreted with the aid of the equation

$$pK_{1}' = pK_{2} - \log f_{\rm H} f_{\rm C1} / f_{\rm H} f_{\rm HC0g} = -\frac{E_{\rm A} - E_{\rm 0} + E_{\rm g}}{(RT/F)} + \log SP_{\rm COg} \quad (1)$$

Here pK_1 is the negative logarithm of the thermodynamic ionization constant, $f_{\rm H}$, $f_{\rm Cl}$ and $f_{\rm HCO_3}$ are the activity coefficients of the indicated ion constituents, $E_{\rm A}$ is the potential of Cell A, after correction for the asymmetry potential of the glass electrode, E_0 is the limiting potential of the cell (B)

Ag; AgCl, HCl; H₂

$$E_{\rm g}$$
 is the potential of the cell

$$Ag; AgCl, HCl (0.1 N); H_2$$
(C)

(1) MacInnes and Belcher, THIS JOURNAL, 55, 2630 (1933).

S is the Henry law constant, and P_{CO_2} is the par tial pressure of carbon dioxide. Since the activity coefficients approach unity as the concentration is decreased, pK_1 may be obtained by a suitable extrapolation from a series of values of pK'_1 .

Except for the change of temperature the experimental arrangements, the preparation of solutions, etc., were exactly as described in our previous paper. The new experimental data are given in Table I, which is self-explanatory. To compute pK_1' values the potentials of Cells B and C are necessary. The first of these, $E_0 =$ -0.2135, was obtained from the work of Harned and Ehlers,² who give a formula connecting E_0 of this cell with the temperature, based on their extensive experimental work. The second, $E_{\rm g} =$ -0.3495, was interpolated from the same measurements, and agrees closely with direct measurements made in this Laboratory. The Henry law constant, S = 0.02443 mole/liter/atm., was obtained from the data of Van Slyke, Sendroy, Hastings and Neill,3 and has been corrected for the deviation of the equation of state of carbon dioxide from that of a perfect gas. The partial pressure, P_{CO_2} , was obtained from the barometric pressure, the analysis of the tank gas and the vapor pressure of water. The small correction arising from the formation of bicarbonate ion

(2) Harned and Ehlers, ibid., 55, 2179 (1933).

(3) Van Slyke, Sendroy, Hastings and Neill, J. Biol. Chem., 78, 765 (1928)

	DATA FOR THE COMPUTA	ATA FOR THE COMPUTATION OF THE FIRST DISSOCIATION CONSTANT OF CARBONIC ACID AT 38°							
Ionic	, ,	Asymmetry	centrations of KH	Barometric	pK'	¢K'			
strength, μ	$E_{ m A}$	potential	$E_{\mathbf{A}}$	pressure	Observed	Computed			
0.01036	-0.3532	-0.0019	-0.3551	751.7	6.309	6.308			
	3539	0012	3551						
	3572	+ .0018	3554						
.01511	3475	0076	3551	755.1	6.308	6.308			
	3479	0070	3549						
	3481	0070	3551						
.02014	3522	0026	3548	757.3	6.308	6.307			
	3521	0028	3549						
.02444	3473	0075	3548	755.1	6.305	6.307			
	3473	0073	3546						
	3479	0071	3550						
.03218	3502	0044	3546	755.1	6.303	6.306			
	3487	0060	3547						
	3505	0044	3549						
.04230	3505	0040	3545	762.2	6.306	6.306			
	3487	— .005 9	3546						
	3505	0042	3547						
.05020	3496	0048	3544	764.0	6.305	6.305			
	3475	0069	3544						
	3497	0050	3547						
.06286	3495	0048	3543	764.0	6.304	6.304			
	3474	0070	3544						
	3494	0052	3546						
.07694	3491	0052	3543	759.3	6.301	6.303			
	3466	0077	3543						
	3490	0056	3546						
.09570	3490	0054	3544	759.3	6.303	6.301			
	3466	0080	3546						
	3487	0058	3545						
.1415	3484	0060	3544	754.7	6.298	6.297			
	3456	0078	3543						
	3481	0064	3545						
. 1919	3479	0061	3540	754.7	6.292	6.293			
	3452	0088	3540						
	3479	0060	3539						

TABLE I

from the dissolved carbon dioxide discussed in the previous paper is negligible in the present case. The resulting "observed" values of pK_1 are given in the next to the last column of Table I, and can be expressed by means of the equation

$$pK_1' = 6.309 - 0.082 \ \mu \tag{2}$$

in which μ is the ionic strength and the constant has been obtained by means of least squares. The limiting value of $\mu = 0$ corresponds to a thermodynamic ionization constant, K_1 , of 4.91 \times 10⁻⁷.

(b) The Second Ionization Constant.—As with the work at 25° the second ionization constant of carbonic acid, K_2 , was determined at 38° by means of measurements on cells of the type

Ag; AgCl,
$$K_2CO_3$$
, KHCO₃, KCl; H₂ (D)

with the aid of the equation

$$pK_{2}' = pK_{2} - \log \frac{f_{\rm H} f_{\rm HCO3} f_{\rm CI}}{f_{\rm H} f_{\rm CO3}} = -\frac{E - E_{0}}{RT/F} + \log \frac{[{\rm HCO}_{3}^{-}] [{\rm CI}^{-}]}{[{\rm CO}_{3}^{-}]}$$
(3)

in which E is the potential of Cell D, E_0 is again the limiting potential of Cell B and $pK_2 = -\log p$ K_2 , and the other terms have their customary meaning. The data are given in Table II. The potential E has been corrected to 1 atm. pressure of hydrogen, otherwise the table is self-explanatory. In computing the values in the column headed " $\rho K_2'$ observed" a correction was made for the hydrolysis

$$K_2CO_3 + H_2O = KHCO_3 + KOH$$

as described in the previous paper. For this

Sept., 1935

				Ionic			
Conce KCl	ntration equivalents pe KHCO3	r liter K2CO3	E	strength #	Obsd.	Compd.	
0.001919	0.001843	0.002227	1.0030	0.009700	10.150	10.149	
.002821	.002709	.003273	0.9942	.01454	10.134	10.137	
.004430	.004254	.005140	.9834	.02319	10.120	10.119	
.005661	.005436	.006568	.9769	.02986	10.106	10.108	
.007608	.007306	.008828	.9690	.04044	10.091	10.092	
.01001	.009615	.01162	.9612	.05355	10.071	10.075	
.01288	.01237	.01495	.9537	.06911	10.061	10.057	
.01949	.01872	.02262	.9415	.10498	10.022	10.023	
.02987	.02869	.03466	.9278	, 1616	9.978	9.980	

TABLE II

purpose a preliminary series of pK' values were obtained, and a corresponding series of stoichiometric ionization constants, K'_{w} , of water were interpolated from the work of Harned and Hamer.⁴ A second approximation was not found necessary. The resulting pK_2' values may be expressed by means of the equation

$$bK' = 10.204 - 0.5577 \sqrt{\mu}$$

in which the constants have been obtained by means of the method of least squares. The limiting value $pK_2 = 10.204$ corresponds to the ionization constant $K_2 = 6.25 \times 10^{-11}$. The Debye-Hückel theory, however, predicts a value of 1.04 instead of 0.5577 for the coefficient of the second term so that this extrapolation must be regarded as empirical. A similar lack of agreement between theory and observation was found in our work at 25° and by Hastings and Sendroy.⁵ The difficulty may be due to our lack of a theory of solutions containing mixtures of singly and doubly charged ions.

Discussion

The first dissociation constant of carbonic acid, $K_1 = 4.91 \times 10^{-7}$ at 38°, as determined by the method reported in this paper, is in substantial agreement with the value $K_1 = 4.82 \times 10^{-7}$, based on conductance measurements, given in the accompanying paper by Shedlovsky and MacInnes, who are, in turn, in close accord with a recomputation by Sendroy of the results of Hastings and

Sendroy which gave $K_1 = 4.83 \times 10^{-7}$. The determinations of this constant at 25° by the electromotive force method (MacInnes and Belcher) and by the conductance method (Shedlovsky and MacInnes) yielded, respectively, 4.45 imes 10^{-7} and 4.31×10^{-7} , a difference which appears to be larger than the experimental error of either procedure. Both values are, however, in considerable disagreement with the value of K_1 = 3.5×10^{-7} , which, until recently, had been generally accepted. Since the conductance method is the more sensitive one and is also independent of the measurements of other workers, we suggest that Shedlovsky and MacInnes' results be adopted.

The value of $K_2 = 6.25 \times 10^{-11}$ for the second constant at 38° is in good agreement with the figure $K_2 = 6.03 \times 10^{-11}$ reported by Hastings and Sendroy.⁶ The K_1 and K_2 values determined by the latter authors depend upon the choice of a standard for the pH scale, a matter which will be the subject of a forthcoming paper from this Laboratory.

Summary

The first and second ionization constants for carbonic acid have been determined at 38° from electromotive force measurements on galvanic cells without liquid junctions.

NEW YORK, N. Y.

⁽⁴⁾ Harned and Hamer, THIS JOURNAL, 55, 2194 (1933).

⁽⁵⁾ Hastings and Sendroy, J. Biol. Chem., 65, 445 (1925).

Received June 6, 1935

⁽⁶⁾ The carbon dioxide in the solutions measured by these authors was determined gasometrically. Applying a small correction for this factor, based on a revision of constants by Van Slyke and Sendroy [J. Biol. Chem., 73, 127 (1927)] and treating their data by the method of least squares, the value obtained is $K_2 = 5.83 \times 10^{-11}$.